STABLE AND REACTIVE CONFORMATIONS OF N-ENOYL-BORNANE-10.2-SULTAMS IN THE ABSENCE OF LEWIS ACIDS: ASYMMETRIC 1.4-HYDRIDE ADDITIONS.

Wolfgang Oppolzer*, Giovanni Poli, Christian Starkemann and Gerald Bernardinelli. Département de Chimie Organique, Université de Genève, CH-1211 Genève, Switzerland.

Abstract: Ground-state conformations of non-chelated N-enoylsultams were determined by X-ray- (1, 3) and ¹H-NMR-LIS evidence. Conjugate additions of lithium tri-s-butylborohydride to 1 and $\frac{3}{2}$ followed by O-acylation of the non-isolated "enolates" furnished stereoselectively either (*Z*) or *(E*)- *O*-acyl-N,*O*-ketene acetals (<u>l</u> → <u>2</u>, <u>3</u> → <u>4</u>) depending on the *s-cis/s-tra*ns conformation of the N-enoylsultams. X-ray diffraction analyses of sultam derivatives $1, 2, 3$ and 4 show a pyramidal nitrogen atom. This information provides an insight into the π -face discriminations observed on addition reactions to non-coordinated enoylsultams (e.g. <u>I</u> \rightarrow <u>II, I</u> \rightarrow III).

N-Enoylsultams 1, R2 - H undergo remarkably efficient and selective *inter-* and *intra*molecular Diels-Alder additions of 1,3- dienes (X-CH₂ or H₂) from the Ca-Re-face $\underline{I} \rightarrow \underline{II}$, when coordinated with EtAlCl₂ or TiCl₄ [1] (Scheme 1).

In extension to these results, various other addition reactions of I have been studied and found to proceed with high π -face discrimination [2], even in the absence of a Lewis acid [3].

Thus, osmylations [4] and simple hydrogenations [5] of β , β -disubstituted enoyl sultams I proceeded predominantly from the Ca-Re-face. Opposite $(C\alpha-Si)$ face attack on I (90-94% d.e.) was, however, observed with conjugate hydride additions $I \rightarrow III$ [6].

To predict and understand the topology of these additions an X-ray diffraction study of the non-coordinated (E) -crotonoylsultam $\underline{1}$ was carried out $[1]$ (Scheme 2).

Scheme 2

3559

This X-ray analysis shows (in contrast to an acyclic N-acylsulfonamide [7]) a pyramidal nitrogen [8] with its three substituents tilted away from the bridgehead C(8)-methyl group. The SO₂- and C=O groups are *anti*, the C=O/C α ,C β - bonds *s-cis* disposed and the O-S-O-angle bisects the plane of the conjugated carbonyl system. 'H-NMR measurements in the presence of Eu(fod)₃ (Figure 1) show also a predominant $SO_2/C=0$ - anti- and $C=O/C\alpha$, $CB-s-cis$ arrangement in solution (Figure 1) [9].

Figure 1: Eu(fod)₃-induced downfield-shifts of ¹H-NMR signals (100 MHz, CDC1₃) of 1, R^1 *= CH₃.*

We now provide experimental evidence for a reactive conformation of 1 via 1,4 hydride addition and 0-acylation of the resulting 0 -lithium- $N,0$ -ketene acetal. Thus, successive treatment of (E) -2-hexenoylsultam 1, R^1 = n-C₃H₇ (0.64 mmol) with lithium tri-s-butylborohydride (0.77 mmol, -78°, 30 min) and TMEDA (0.9 mmol)/pivaloyl choride (0.8 mmol) in THF $(-78° + r.t.$ over 15 h) furnished the O-pivaloyl-N,O- ketene acetal 2 (67%, Scheme 2). X-ray diffraction analysis of 2 [10] confirms the (Z)-configuration of the olefinic bond which carries a pyramidal nitrogen. It thus appears that the s-cis-conformation of the enoylsultam 1, R = n-C₃H₇ translates into the (Z)-configuration of 2 via the corresponding (Z)-O-lithium-N,O-ketene acetal [ll]. In view of previously reported hydride additions to conformationally defined enones [13] (which correlate to the resulting enolate configurations) we expected Ca substituted enoylsultams $\frac{3}{2}$ to adopt rather the C=O/C α , C β - *s-trans* arrangement. X-ray diffraction measurements [14] of the N-tigloylsultam $\frac{3}{2}$, R^1 - CH₃ (Scheme 2) displayed as before a pyramidal nitrogen atom flanked by anti-disposed S02- and C-O groups, but a *s-transoid*

conformation (46° out of plane) [15]. Conjugate hydride addition/enolate 0-acetylation of <u>3</u>, \mathbb{R}^1 C_2H_5 [16] gave exclusively the (E) -O-acetyl-N,O,-ketene acetal 4 as confirmed by X-ray structure elucidation [17].

Based on the above evidence we propose as a general working hypothesis the following topicities for addition reactions to enoylsultams (Scheme 3):

(1) Disposition of the C-O and SO₂ groups anti (\underline{A} , \underline{C}) in the absence, but syn (\underline{B} , \underline{D}) in the presence of chelating metals [3].

(2) s-Cis-relation of the C-O/Ca, C β - bonds when the Ca-substituent R^3-H (\underline{A} , \underline{B}) but s-trans when R^3 =alkyl and R^2 -H (C, <u>D</u>).

It is therefore plausible to ascribe the $Ca-Si$ -face preferred hydride additions $\underline{I} \rightarrow \underline{III}$ to a reactive conformation \underline{A} . Consequently, the hydride approaches the π -face of \underline{I} opposite to the lone pair on the N-atom.

We believe that the observed π -face discrimination originates in the chiral information provided by the bornane skeleton which is transmitted, *via* the pyramidal nitrogen atom, to the remote $C\beta$ -position. Recently, the possible role of pyramidal nitrogen in π -face-selective electrophilic reactions with enamine derivatives has been increasingly considered [12].

It is interesting to note that lithium tri-s-butylborohydride adds to I from the olefinic $Ca-Si$ -face ($\underline{I} \rightarrow \underline{III}$) in contrast to cyclopentadiene which undergoes non-catalyzed Diels-Alder additions $(I + II)$ predominantly (53 - 66% d.e.) from the C α -Re-face. Depending on the reaction type, it seems that additions to non-coordinated I can proceed either from the π -face anti or syn to the lone electron pair on the N-atom. Nitrile oxide additions to I as discovered by Curran and coworkers [18] present a striking example of the latter topicity.

There is no doubt that the practical, but theoretically puzzling stereoelectronic bias of N-enoylsultams I [18] deserves a more precise understanding. To this end, further work is in progress.

Acknowledgements: Financial support of this work by the *Swiss National Science Foundation, Sandoz AG,* Basel, and *Givaudan SA,* Vernier, is gratefully acknowledged. We thank Prof. *D.P.Curran* for kindly providing us the manuscript of the preceding communication prior to publication. We also thank Mr *J.P.Saulnier*, Mr. A.Pinto, and Mrs. *D.Clément* for NMR and MS measurements.

- 111 W.Oppolzer, C.Chapuis, G.Bernardinelli, Helv. *Chim. Acta* -I 1984 67, 1397.
- [21 Review: W.Oppolzer, *Tetrahedron 1987, 43,* 1969; Erratum: *Tetrahedron* 1987 43, Issue 18. Discussions of a possible stereoelectronic bias: $Ref[3]$, footnote 8; $ref[4]$, footnote 1.
- [31 Evidence for the conformation of Ti'" -chelated enoylsultams will be reported in due course. The π -face discrimination observed on conjugate additions of Grignard reagents to enoylsultams \underline{I} has also been attributed to a chelation of \underline{I} (by Mg): W.Oppolzer. G.Poli *Helv. Chim. Acta* 1987, 70, 2201. To what extent a "chelation" by Os or Pd plays a role in asymmetric osmylations [4] and hydrogenations [5] of I remains to be clarified.
- (4) W.Oppolzer, J.-P.Barras, *Helv. Chim. Acta* <u>1987,</u> 70, 1666.
- [51 W.Oppolzer, R.J.Mills, M.Rdglier *Tetrahedron Lett. 1986, 27, 183.*
- [61 W.Oppolzer, G.Poli, *Tetrahedron Lett. 1986, 27, 4717.*
- 171 L.Dupont, O.Dideberg, J.Touissaint, J.Delarge, *Acta Cryst. 1980, 836, 2170.*
- [81 *The* calculated height of the pyramid *h* 0.230 A indicates a nitrogen-hybridization approximately halfway between $\mathop{\rm sp}_2$ and $\mathop{\rm sp}_3$.
- [91 C.Chapuis, *Thesis, Universit8 de Genkve 1984, No. 2144, p.56.*
- (10) Crystallographic data for compounds 2, 3, R^* =CH₃, and 4 have been deposited at the *Cambridge Crystallographic Data Center.* Observed and calculated structure factors may be obtained from one of the authors *(G.B.). The* data were collected on a *Philips PWllOO* diffractometer (MoKa). The structures were solved by a direct method (Multan-80) and refined by a full matrix least-squares analysis. The positions of the hydrogen atoms were calculated. The crystals of pivaloate <u>2</u> (MeOH), m.p. 94-95° are orthorhombic, *a*=10,388
(2), *b*=13.271 (3), *c*=16.391 (2) Å, space group P2₁2₁2₁, *z*=4, *d_C* = 1.169 g.cm⁻³. The final R -factor based on 1601 observed reflections (capillary, argon atmosphere) was 0.084
- $\left\lfloor \frac{1}{2} \right\rfloor$ It is plausible to assume that the depicted solid state conformation of pivaloate <u>2</u> resembles that of the intermediate 0-lithium-N,O-ketene acetal. Accordingly, alkylations of the latter (e.g. by MeI) [6] proceed with a π -face discrimination which corresponds to an electrophilic attack at Ca from its *Re-* (bottom) face, opposite to the lone electron pair on the nitrogen atom [12]. This permits the highly selective generation of an additional stereocenter at Ca.
- [121 The possibility of a r-face-directing bias of the pyramidal nitrogen atom on the electrophilic attack of enamines and N,O-ketene acetals was first evoked by *Eschenmoser* and coworkers: L.G.Damm, Thesis, ETH No.6390, 1979; A.Kümin, Thesis, ETH No.6509, 1979; A.Kiimin, E.Maverick, P.Seiler, N.Vanier, L.Damm, R.Hobi, J.D.Dunitz, A.Eschenmoser, *Helv. Chim. Acta 1980, 63, 1158.* For related reactions of 0-metalated N,O-ketene acetals see: P.Magnus, T.Gallagher, P.Brown, J.C.Huffman, J. Am. *Chem. Sot.* 1984 *106, 2105;* A.I.Meyers, B.A.Lefker, K.Th.Wanner, R.A.Aitken, *J. Org. Chem. 1986: 51,* 1936; D.Seebach, E.Juaristi, D.D.Miller, C.Schickli, T.Weber, *Helv. Chim. Acta* 1987, 70, 237; Ref. [2], footnote 8.
- 1131 A.R.Chamberlain, S.H.Reich, *J. Am. Chem. Sot. -9* 1985 *107, 1440.*
- 14] The crystals of tigloylsultam <u>3</u>, R² CH₃ (MeOH/CH₂C1₂), m.p. 181-182°, are orthorhombic, $a = 6.9758$ (12), $b = 9.3449$ (12), $c = 23.230$ (5) Å, space group P2₁2₁2₁, $z = 4$, $d_c =$ 1.304 g.cm⁻³. The final R-factor based on 1645 observed reflections was 0.047 .
- [15] The observed conformation of <u>3</u>, R' - CH₃ provides an explanation why osmylations [4] and hydrogenations [5] of Ca-substituted enoyl sultams (e.g. of $\frac{3}{2}$, R^1 = CH₃) proceeded with only poor π -face selection in contrast to the corresponding reactions of the C α unsubstituted enoylsultams I.
- [161 Dropwise addition of 1M lithium tri-s-butylborohydride in THF (0.8 mmol) to enoylsultam <u>3</u>, K° = C₂H₅ (0.643 mmol) in toluene (10 ml) at -80°, stirring at -80° for 5 min then → -30" over 30 min, then at -30" for 30 min. addition of AcCl (1.415 mmol) at -8O", warming to -60° over lh, quenching with sat. aq. NH_LCl , work-up, flash chromatography and crystallization (MeOH) gave 4 (59%).
- $\lfloor 17 \rfloor$ The crystals of acetate 4 (MeOH) , m.p. 125° are orthorhombic, $a = 27.272$ (8), $b = 9.5089$ (13), $c = 27.272$ (8) Å, space group $P2_12_12_1$, based on 1631 observed reflections was 0.057. *-* 1.256.cme3. The final R-factor 7. $z = 4, d_C$
- 1181 D.P.Curran, B.H.Kim, J.Daugherty and T.A.Heffner, *Tetrahedron Lett. 1988, 29,* preceding communication.

(Received in Germany 29 February 1988)